Seeding Socioeconomic Avalanches! [Hacked by WordPress; filtered by Google!]

Posts Tagged ‘Appalachian Mountains’

Shrinking World, Shrinking Ecosystems

Posted by edro on December 27, 2009

Temperature velocity for the 21st century is 0.42 kilometers (0.26 miles) per year: Study

Climate Change Puts Ecosystems on the Run

Global warming is causing climate belts to shift toward the poles and to higher elevations. To keep pace with these changes, the average ecosystem will need to shift about a quarter mile each year, says a new study led by scientists at the Carnegie Institution. For some habitats, such as low-lying areas, climate belts are moving even faster, putting many species in jeopardy, especially where human development has blocked migration paths.

“Expressed as velocities, climate-change projections connect directly to survival prospects for plants and animals. These are the conditions that will set the stage, whether species move or cope in place,” says study co-author Chris Field, director of the Carnegie Institution’s Department of Global Ecology. Field is also a professor of biology and of environmental Earth system science at Stanford University and a senior fellow at Stanford’s Woods Institute for the Environment.

The research team, which included researchers from the Carnegie Institution, Stanford University, the California Academy of Sciences, and the University of California, Berkeley, combined data on current climate and temperature gradients worldwide with climate model projections for the next century to calculate the “temperature velocity” for different regions of the world. This velocity is a measure of how fast temperature zones are moving across the landscape as the planet warms―and how fast plants and animals will need to migrate to keep up.

EDRO Comments:

What the paper doesn’t mention, however, is the fact that the species “climbing a nearby mountain” in search of cooler temperatures would be climbing into an acid rain trap.

Forests and plants in mountain regions are heavily affected by “acid fog,” in addition to acid  rain. At higher altitudes, the lingering fog, which is more acidic than rainfall, surrounds the plants, affecting the leaves ability to carry out photosynthesis and produce photosynthetic products.

The acid fog does causes slower growth, disease and death of the plants and forests. Examples of this include the many areas of the eastern U.S., especially high altitude forests of the Appalachian Mountains.

The researchers found that as a global average, the expected temperature velocity for the 21st century is 0.42 kilometers (0.26 miles) per year. But this figure varies widely according to topography and habitat. In areas of high topographic relief, where species can find cooler temperatures by climbing a nearby mountain, velocities are relatively low. In flatter regions, such as deserts, grasslands, and coastal areas, species will have to travel farther to stay in their comfort zone and velocities may exceed a kilometer per year.

EDRO Comments:

The other factor is scarcity of food for many species due to the soil profiles of mountainous areas. Upland areas often have thin soils and glaciated bedrock, profiles that make it extremely difficult for plant growth.

Can the planet’s ecosystems keep up? Plants and animals that can tolerate a wide range of temperatures may not need to move. But for the others, survival becomes a race. After the glaciers of the last Ice Age retreated, forests may have spread northward as quickly as a kilometer a year. But current ecosystems are unlikely to match that feat, the researchers say. Nearly a third of the habitats in the study have velocities higher than even the most optimistic plant migration estimates. Even more problematic is the extensive fragmentation of natural habitats by human development, which will leave many species with “nowhere to go,” regardless of their migration rates.

Protected areas such as nature reserves are generally too small to accommodate the expected habitat shifts. According to the study, less than 10% of protected areas globally will maintain current climate conditions within their boundaries 100 years from now. This will present a challenge for many species adapted to highly specific conditions, especially if migration to new habitats is blocked.

Scott Loarie, a postdoctoral fellow at the Carnegie Institution and lead author of the paper, points out that an appreciation of climate velocities could stimulate discussions about sound management for climate change, from the design of nature reserves to the planning of assisted migrations for affected species. He adds that it should also stimulate discussion about strategies for minimizing the amount of warming and thereby help slow climate velocity.

The paper was published in the 24 December, 2009, Nature. Contact: Chris Field  cfield@ciw.edu

Related Links:

Posted in 286W, acid fog, acid rain, air pollution, climate change | Tagged: , , , , | Leave a Comment »